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FOREWORD

Three papers entitled "Transient Response of a Linear Antenna to Pulse
Voltage Excitation," "Transient Terminal and Field Properties of Linear
Antennas," and "Backscattered Field of a Linear Antenna and a Two Element
Array" constitute the three chapters of this report. They represent the ap-
,roach taken by Dr. Sandler to the analysis of scattering from an array of

linear antennas. The first paper develops an expression for the far field of a
linear antenna excited by a pulse. A simple approximation for the current
distribution on the antenna is assumed in this derivation. The second paper
deals with essentially the same problem only from a point of view which is
analogous to traveling waves on a transmission line. The concepts developed
in these two papers have been incorporated into the third to investigate the
backscatter properties of both a linear antenna and an array composed of two
linear elements.

A parallel effort by Dr. 0. D. Sledge of NRL is currently nearing com-
pletion. The first phase of this work has been published as NRL Report 6681,
"The Scattering of a Plane Electromagnetic Wave by a Linear Array of
Center-Loaded Cylinders." The approach has been to investigate the array
backscatter for steady state excitation. It is planned to integrate these results
over a broad band of specific frequencies to obtain the transient response.

These two efforts represent a cooperative approach to the problem in
that the same goals are desired and similar models have been chosen. Be-
cause of a lack of precedence in this particular subject the problem was ap-
proached in different ways, the basic difference being the manner chosen to
obtain the current distribution on the elements of the array. It is expected
that the two approaches will complement one another to provide a better un-
derstanding of the scattering from arrays of linear elements.

PROBLEM STATUS

This is a final report on one phase of the problem; work on the problem
is continuing.

AUTHORIZATION

NRL Problem R02-44
Project ARPA Order 820

Manuscript submitted February 27, 1968.
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ON THE TRANSIENT RESPONSE AND BACKSCATTER
PROPERTIES OF LINEAR ANTENNAS

CHAPTER 1

TRANSIENT RESPONSE OF A LINEAR ANTENNA
TO PULSE VOLTAGE EXCITATION

One method of finding the transient response of a single antenna or an array is
through the reciprocity relation (1). The reciprocity concerns the relation between the
far zone electric field and the receiving current on a linear antenna. Consider the linear
cylindrical antenna of length 2h shown in Fig. 1. The far zone field E (0) is

E () = 2ir F(O,/3No) . , (l)

where

= 12071 ohms, (2)

V0 g e-i (3)

Zo + Zg Zo + Zg

and
F(0,,8,h) = field factor. (4)

With Eq. (3) substituted in Eq. (1) the retarded electric field is expressible as

r V0 ~~~~~0 j -(r /C) ~~~~~~~(5)
E(0) = (Z + Z°) 2 F(f .,O) e .

Thevenin's theorem may be used to find the current in a load resistor which is con-
nected to a receiving antenna. For the receiving antenna of Fig. 2, the open circuit
voltage V0 is

Voc = -2h,(0) E e [t2/ ] Cos (6)

By Thevenin's theory the current in a load resistor connected to the antenna, IL is

K= -2he(O) j M[e -(r2 /c) c (7)
Z + ZL ZO+ ZL °

The effective length of the receiving antenna is related to the field factor of a transmit-
ting antenna through the reciprocity relation; thus

F(6,_8h) = ohe(O,/3h) (8)

1
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Fig. 1 - Driven antenna Fig. 2 - Receiving
antenna

Equation (8) expresses the idea that the transmitting and receiving patterns of antennas
are identical. When Eq. (7) with Eq. (8) is differentiated with respect to time, the re-
sulting relation is found to be proportional to the far zone electrical field.

The transient response of a single antenna can be considered as a superposition of
the steady state components which make up the transient signal. For example, the Fou-
rier representation of a voltage step v( t) is

V(t ) = oT + V sin ct d. (9)0o

A pulse length to can be represented by two step functions displaced in time; thus

Vp(t) = V(t) - V(t - to) (10)

where V( t) is given by Eq. (9).

To get the response of an antenna to a pulse it is only necessary to compute the re-
sponse to a step function and apply superposition. The basic expression for the step
function transient response of a broadside illuminated antenna is given by Schmitt and is

E(t) = A(8h) [!Aph cos // ('i ) d/3/i + JB(8h) sin /3h (- ) d8h] (11)

where

A(/3h) = I +m (12a)
(Zo +Zg)S8i

J/~he (0)
B(h) = Re (Z + Z )/3h (12b)

and

t 1 = t - 1 . ~~~~~~(12c)

To evaluate Eq. (11) with Eqs. (12) the values of effective length and driving point im-
pedance must be known over a large frequency range. The range is determined by the
relative contribution of the particular frequency terms to the integral.



NRL REPORT 6717 3

400 (a/A= 0.00191)

Ro AND Xo IN THE VICINITY OF RESONANCE FOURTH FIFTH SIXTH

300 F IRST SECOND THIRD X0
Xo Xo

200 l

100 1 R R R0 R 01 13 1

-0IOO - 0h _

Fig. 3 Driving point impedance near resonance

Based on published impedance data for long antennas, given by Wu (2), the driving
point impedance is plotted in the vicinity of the resonant points in Fig. 3. Note that in
the vicinity of resonance the resistance is moderately constant and the reactance has al-
most a linear slope. Thus in the vicinity of the first resonance the following represen-
tation is possible:

Z0 =RO + m,8,o m3h) (first resonance), (13)

where

R 0si 125 Q.

X0 nu 7 50 Q.

-m 5000

At the second resonance

the vicinity of resotR +i(X +otX mh) (second resonance). (14)

In general

Z0 ; o + 1- 7T + njT)X 0 - mh, n =1, 2, 3, resonance), (15)

A Fourier trigonometric representation for Eq. (15) is

a)~~~~~~~~~~~~~~1a
Zo o + j E vCos V,8h, Xv~ = 2(COS - 1 (1a

v=l

or

Zo = Ro + iX, cos ,Bh + ............ (16b)

Here- it is to be noted that the major contributions to the integral occur in the vicinity of
resonance. A continuation for functions can be made in the region away from resonance,
provided there is a negligible contribution to the integral. The zeroth-order effective
length at broadside incidence is
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,6he (72) = tan 2 * (17)

The simplified form for the transient electric field is

E(t) = 0Vr (I +ji 2 ) (18)

where

(D t a n 
11 =?~ tan- X2 s (cs ax)C (19)

X tan - Cos
' = -X0 X + :52 (sl n ,ax) (20)

R + X1 os x

and

= = (~ c) (21)

The parameter a in Eq. (21) measures the time it takes for an electromagnetic wave to
travel from the center to the end of the antenna.

Since near resonance

x

n otan = sin a,

then 11 becomes

al2R X0 dsinx _ (22)

° R 2 + X 2 CO 2 (S z 0 0 1

Before Eq. (22) is evaluated the properties of the following integral will be investigated:

13 f[ sin p ( =xs ) d = 0< q < P (23a)

= < p q (23b)

= Tm i < p <q. (23c)

When the first term of the integral in Eq. (22) is expanded in a Fourier series, an infinite
number of integrals resembling Eq. (23) will appear, each with a different coefficient and
integer value of p. The integral in Eq. (23) represents a series of step functions begin-
ning at q = c and ending at q = p. When a series of alternating step functions of alternating
sign are added, a series of pulses can be produced. Figure 4 shows an example of such
a series of pulses. The integral h may be placed in the following form after the trigo-
nometric expansion:

4
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Fig. 4 - Train of pulses
produced by Eq. (Z3)

I I a, o E b n
n=1

The coefficients bn are evaluated, in the
where

(NOTE: p=I PULSE LASTS
p= 3 UNTIL qzp=lI p=3 PULSE

IS NEGATIVE AND LASTS
UNTIL p=q=3)

of sin
0

(cos a ) dx.

Appendix, in terms of the general integral la 

7r

1f Co a dx.
la rJ a

2 + cO 2 X0a

Expressed in terms of la the first few coefficients bn are

I1 -12
b = 2 b2 = °

I2 - 1
2 2 b 4 = 0

b 3 3 (I I + I (1I 6

where

(Z1 ) a/2 + (Z )-a/2

2a VI + 2

(26)+ Res (z 0),

(27)Z = ( - 2a 2) + 2a +a2 -1 + 2a, a2 << 1,

in which a = 2, Res ( z = ) = 1; a = 4 Res ( z = ) = -1 + 2a 2 . Note that when ( 0 /XI) 2 < < 1,

bn % (-1) n/a, n odd. This case is shown in Fig. 5. Note that all the pulses are the same
height. Note also that the first pulse is of length a = 1, and all other pulses have a length
equal to a= 2. Actually, when the "damping terms" in a= Bo /X1 are added, the pulse
heights are seen to decrease for increasing time. The integral 12 in the far field ex-
pression can be placed in the form

2X n even

After integration, Eq. (28) becomes

I = 1 E
2 2c , 

X n even

OD
sin nx sin ax ax.

0 s i .

b In -a n a,

(24)

(25)

1=

(28)

(29a)

5
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2

-2

Fig. 5 - Step response (top) and pulse
response obtained by combining two
step responses (bottom)

2 I- E I Ci n x, n = a.
2X n even

The main contribution of the 12 integral to the field is a spiked pulse at a = 2, 4, 6, etc.
This spike is not included in Fig. 5.
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2. Wu, T.T., "Theory of the Dipole Antenna and the Two-Wire Transmission Line,"
J. Mathematical Phys. 2:550 (1961)
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Appendix

EVALUATION OF THE COEFFICIENTS b,

Consider the general integral I, where

7T 7r

= f cos a 1 2 cos aO do,
a a 2 + cos 2 0 'T f 2a2 + 1 + cos 20

where a = RO/X1. With'the substitution = 2, Eq. (Al) becomes

2 C cos -45

I(" = 2^ do .
a 7T + 2a2 + cos 

0

(Al)

(A2)

Equation (A2) may be evaluated by complex variable theory by integrating around the unit
circle. After the substitution z = e 0, Eq. (A2) is reduced to the contour integral

_Z C/2 + -a/2I =-+la =7T J 2z ( + 2a2) + 1 + z2
(A3)

where c is the unit circle. If a is even, there are no branch points and the poles are lo-
cated at

(A4)0 = 0 and z 12 = -(1 +2a 2 ) 2 I+a 2

The poles within the unit circle are at z0 = o and z1 = -(1 + 2a2
) ± 2 11 +02. The pole at

z = is of order (a/2). The integral is given by multiplying the sum of the residues by
2i; thus

'a = 2ri E Res = 2Ti
(Z) a/2 + ()-a/2

4a]1 + a2
(A5)+ Res ( z = 0) .

The residue at 0 depends on the order of the pole at a = o.
given by

Res = ( ,1 ! dfi [(z )

where

In general the residue is

z = ,

= a/ 2, Zn = ,

and

7
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f(2) za/2 + -a/2
g(z) z2 + 2z (1 +a 2 ) + 1

1 z +()
OL/2 z2 + 2z (+2a 2 ) + 1

The first three residues are evaluated as follows:

for a= 2,

n = 1: Res = 1,

for a=4,

n = 2: Res = -1 + 2a2

and for a = 6,

n = 3: Res = 2 + 2 (1 + 2a 2 ) [1 - 2 ( 1 + a 2 ) ] .



CHAPTER 2

TRANSIENT TERMINAL AND FIELD
PROPERTIES OF LINEAR ANTENNAS

INTRODUCTION

The transient performance of antennas has received much less theoretical and ex-
perimental attention than that of the steady state. Notable contributions to the under-
standing of the transient performance of antennas have been made by Schmitt (1), Schmitt
and King (2), Schmitt, Harrison, and Williams (3), Tseng and Cheng (4), and Bulgakov,
Busev, and Rysakov (5).

Schmitt, numerically and experimentally, investigated the step function response of
a single dipole. Using a limited range of driving point impedance data, Schmitt found the
antenna field and base current for a step voltage excitation. The results agreed in es-
sential parts with experiment. A simple qualitative picture was given to explain the time
variation of the far zone electric field. The physical picture corresponding to the cur-
rent and charges on a short-circuited transmission line excited by a step voltage was
used for a model of the radiation processes of an antenna.

Schmitt and King explained the early time response of a linear antenna. The time
interval examined was less than the time it took for the first pulse to return to the driv-
ing point. A reflection coefficient was defined based on an average value for the range of
steady state frequencies contained in the transient. The impedance used here was that of
an infinite antenna.

Schmitt, Harrison, and Williams used large steady state ranges of the effective
length and driving point impedance to predict the transient response of a single dipole.
Tseng and Cheng used simple assumed current distributions to produce a simplified
analytical determination of the transient characteristics of antennas and arrays.
Bulgakov, Busev, and Rysakov pointed out the errors inherent in simplified analyses of
the transient performance of antennas. They also examined the field structure for a
cylindrical antenna under transient conditions.

It is the purpose of this chapter to (a) place the transient performance of a linear
antenna using the transmission line pulse analogy on a stronger theoretical base, and (b)
use the superposition principle to include the actual impedance properties of the antenna.

TRANSMISSION LINE ANALOGY

Consider the transmission line of Fig. 1 of length I with characteristic impedance
Z0, driving point impedance Z1 , and load impedance Z2 . The traveling-wave current on
such a lossless line is approximately

I(Zco) = I0 [eiwz/v - r ej( 21 -Z) /V + r1 r2 ej( 21 +Z) /V + . (1)

The reflection coefficients r1 and r2 are

9
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.4 1. -t

Al Zo 

_ 3

Z2 Fig. 1 - Lossless transmission line of length I

zI - zo
1 =Z +Z0

I 0

and

z. - z
2 z2 + z '

The simple interpretation of Eq. (1) is that of a traveling wave of constant phase velocity
(except at the ends), which is continually reflected at 2 = 0 and = 1. The time response
of Eq. (1) for a step function of current is

I(Z 1 ) = { H [t - a] - r2 11[t - v l '1 21[ - ] +

where H(t) = for t < , H(t) = for t > o, and r and r22 are constants. In Eq. (3)
Hllt - /v]I signifies that the step function exists for all times t, where o < t < /v or

H [t -V-] = H[t] - H t -

H [t V = H[t V ] H[t V

(3)

(4)

(5)

etc. Equation (4) expresses the fact that the first traveling wave exists only over the
time it takes to reach the load impedance at = (see Fig. 2).

Consider now a center-fed dipole of length 2 shown in Fig. 3. There are, in this
case, two traveling waves originating at = . Both waves travel outward toward the
ends at z = +h and are reflected by the open circuit (2 = ). After traveling back to = o,
the waves are partially reflected back and transmitted to the opposite side of the antenna.
The paths of general rays are depicted in Fig. 4. The traveling wave forms which cor-
respond to Fig. 4 are, for z > ,

1

Fig. 2 - Rectangular
pulse of length I /v

H (t) - H(t-.L/)

I ~=

io
2h~=

Fig. 3 - Center-fed
dipole of length 2hI t , it

(2a)

(2b)

10

1/11
t
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a

Fig. 4 - General form of traveling waves

I (S,) = 10 [-i (co/C)2| A jC)C(^2 l° ( )-j(co/C)(2A+2) IA(. o~ Ih --j (oIC)(2h-0) I + (r 1 t ),e- lo)(2 + 
- rt)e -j( /0) (4h | 0 .]

where t 1 = transmission coefficients at 2=0. In Eq. (6) e ( c/C) signifies that the
wave exists only over the time that it takes the wave to travel from 2 = 0 to 2 = h. The
waves in Fig. 4 for 2 < 0 are

1(zco) = 1 [e+j(c/c)2 -h - e ji) /c( 2h+2) 0 )eJ(/C)( 2h-2) h0 -Ae + :-h-t 1 0-(r - 1 )ej(wc/ )(4h+2) 0 + *1

(6)

(7)

The radiated electric field E can now be computed based on the current form given
by Eqs. (6) and (7). Since the antenna current is symmetrical with respect to z, either
formula may be used in the general relation for E4 given by

(8)EjI e [t -(r /) I
Er= j0 Yo () e-

where

F0 ( O,/h) =
(co/C) s in A (

1 ) i h 12, ( z')e'

4 = 1207 ohms, and 80 = co/c. If the current is a step
sentation

( w/c) 'cos 9 d (9)

function, then 1 ( ) has the repre-

I ) sin ct-12,( t) = + I c dco.-2 7T Jco (10)

The time variation of the far-zone electric field follows from an integration of the steady
state relation of Eq. (8) with Eq. (10). For the first traveling wave

Eo(t) = ° a _

27iT r

J e } ~~~~~cot
j i F0(e ,/h) X do
0

ti,

(1 la)

11
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Ea~~ (0 )=2° a )10 1' O
h

fA

sin 6
d' FO jRec £ e [( '/')(cos 0-l) +t d,

A 

where

Im = imaginary part

Rec- = , IZ > h
A

= 1, 1| < h .

Since the delta function 8(t) is given by

8(t) = J cos t dco,
I 

Equation (llb) becomes

601 (0) A
ES (t) = A

-h
Rec ( ) [t - - ( - cos)] d'.

The integral in Eq. (13) is easily evaluated from the definition of the delta function 8( t)
and Rec (z/A). In general,

i-hA (i) 8(t -) d' = 1,
t < (h)I (14a)

= 0, t >y(A) .

With Eq. (14) in Eq. (13) the radiated electric field for the first traveling wave is

(14b)

6012(O) {
Er (t) = H(t)0 r 

60 1(0)
= ~[H( t) - H (t - a) 

H [t - c (1 - cos )V
C J

a = h (1 - cos 0) .
C

(16)

(15) says that the first traveling wave produces a far field that starts at a = 0
at a = h( 1 - cos ) /c. A generalization of this result for the current of Eq. (6)

Er (-t t-120I,(-)E0 t) = { [11(t) -H(t -)] - [H(t -a,) - H(t - 20)I

+ (r t) [H(t - 2a) - H(t - 3a) ] - (r 1 - t) [H(t - 3a) - H(t - 4a)] +. . .} . (17)

(llb)

(12)

(13)

where

(15a)

Equation
and ends
gives

(15b)

12
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1 - - I A 1

1 *3 5 -_ a

RAY PATHS
,1, I

2 = -h

1

-1

(a) Short circuit at center of
antenna, r = -1 and t 1 = 

1 /2 3

1 2

. 1 2 1 a

(b) Matched load at center
of antenna, r = 0 and t 1 = 0

= ht = h

ti, t

1

-1

ti, r

I

1 2 4

a

r

-1

a

a

(c) Imperfect open circuit at
center of antenna, r = 0.9

(d) Imperfect short circuit at
center of antenna, r 1 = -0. 9

Fig. 5 - Traveling waves and transient electric fields

Figure 5a shows the ray paths and transient electric field for a short-circuited antenna.
Since no account is taken here of the antenna impedance, there is no damping of the far
field with time. Other transient fields for intermediate cases are shown in Figs. 5b, 5c,
and 5d. Note that in the critically damped case the wave only travels to the end and re-
turns to the driving point.

In the preceding analysis, it was assumed that the base current was in the form of a
step function. The more common case is when the base voltage is in the form of a step
function. The base current in the steady and transient states is then a function of the
impedance properties of the antenna. Once the actual base current has been computed,
superposition can be used to find the far field. Thus, if i (u) is the current in the fre-
quency domain, then

(18)i () = V(U) /Z(u) 

If V(t) is a step function, then

13

)-= -h

Es

-1

-1 71

E-1
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Vi V= Ir eight dwo
i ( t 2) = 2+ [m J (W) co

0

The superposition integral may then be applied
function response of Eq. (17):

E(t) = i(0) E, (t) +

to the i(t) of Eq. (19) using the step

i '(Tr) E ( t - ) d (20)

or, using integration by parts,

E (t) = i(t) E, (0) - (21)

where E" (M) is the step response and the prime denotes differentiation. The superposi-
tion given by Eq. (21) is particularly useful for this analysis.

A simple, although crude, approximation for the driving
antenna is given in Chapter 1, Eqs. (16), as

ZO R + j Xv os v,Ok
v = 1

e o+ jXl cos/Liz +.

point impedance of a linear

(22a)

(22b)

where

BO 150 ohms,

X = 2 (cos V7r - 1) ,
77V2

m = 500,

and

£ = 2 In (2h/a) = 15 .

From Eqs. (19) and (22b) the current i (t) is

i( t ) = ° 1Im r ej t
2 T R Jo + d Cos ch

da
co 

(23)

where

X R = RO + RLI RL = load resistance,
R 2X 1i XL'IX load reactance.

The integrand of Eq. (21) has a simple pole at cw= o on the real axis
ber of complex poles located at

and an infinite num-

(24)h 7r- =- , odd,
C 2

and

(19)

14

Ii (-r) E',, ( t - r d-r ,0
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sinh Y = ()n-1 (25)

where X = c + j y. The poles of Eqs. (24) and (25) in the upper half plane are at

A 7T h= (4n+1) - X n = 0,1,2,...; y = sinh -1 . (26)
o 2 Y c 

With Eq. (26), the transient part of i (t) in Eq. (23) is given by

OD j / 2a 4nl+i

i(t) = ° e-(h/c)t sinh- 6-1 e J E (27)
wl? (4n + 1) 7T + j-

n=O

where a = (/c) t. The first and dominant term of Eq. (27) is

i Vt 2 -(hll)t inhl 5t- T; ;I(8

The sum of the remaining terms is slowly varying except at a = 1, 5 9, ... where it
has an infinite peak.* This peak is due to the order of the approximation used for the
impedance. Equation (28) is a surprisingly good approximation to the current.

Since i (o) = , the far field is found by substituting Eq. (28) in Eq. (21), or

C~~~~~~~~

ENO) = i E (0) -io | e (/ in t [ si n~ sin(2ht

+ 2 cos ( h t)1 E' (t - r) d . (29)

The derivative of the step voltage response of the electric field Eg9 F can be found directly
from Eq. (17):

E0 120! (0)
Ed~s (t) = Z {[8(t) - b(t -a)] - [3(e -a) - 5(t -2a)]

+ (ri - t 1) [8(t - 2a) - 8(t - 3a) ] - (1- t1) [8(t - 3a) - (t - 4a) ] + . . . } . (30)

*Since (4n + 1) >> -1 for n > 0, the sum in Eq. (27) is given by the following formula for
n > 0 (note that the n = 0 term is given by Eq. (28)):

e-aI sinh- e 5 JJ71 (ej(7T/2) al) 4n+1
0~t 'Te mL (4n +1) 7T

n}=1 2

where the bar over i(t) denotes that the n = 0 term is missing. It can be shown that i(t)
can be given as the addition of two related sums:

tae sinh-1 [ s in (2k -1) al + ( j) l sin (2k-l)ai]

k=1 k=1

-asin 2 1 1 [4. 2 (4 4]ie -[.+ In an + 7a)

15
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Substitution of Eq. (30) into Eq. (29) yields

E" M i MEr 0 E 
t

- [8(t - -a) - 8(t - - 2a) ] + (r1 - t ) [8( t - - 2a) - ( t - - 3a) ]

- ( - t ) [8(t -- 3a) - S(t -.- 4a)I + ... } d,

where

Cos (2 C f )

120-(0) c + (sinh i-1) ,2A= r A 4 (Sn

and

= tan-I 4 sinh-' -1
=T

By direct integration of Eq. (31) E (t) is given entirely in terms of i (t):

E(t) = i(t) E(0) -E(O) {i(t) -i(t -a)] - [i(t -a) -i(t -2a)]
+ (ri - t) [i(t - 2a) -i(t - 3a) ] - (r - t) [i(t - 3a) - i(t - 4a) ] + } (32)

A plot of Eq. (32) for various values of r and t 1 is shown in Fig. 6. Note that the initial
response (t < 2a) is independent of the load impedance.

CURRENT AT CENTER OF ANTENNA

RL=O, XL=O

= C t
jti

FAR FIELD

: t

CURRENT AT CENTER OF ANTENNA

RL 500 ohms, XL: O

L(t)

FAR FIELD

Es(t) 

2 3 4 5 -a

a b

Fig. 6 - Antenna current and far field; (a) RL = ° and XL = °,
(b) RL = 500 ohms and XL= °

i(r) {[S(t - ) - 8(t - - ) ]

(31)
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CHAPTER 3

BACKSCATTERED FIELD OF A LINEAR ANTENNA
AND A TWO-ELEMENT ARRAY

INTRODUCTION

The two previous chapters have investigated the transient far field and terminal
properties of a single linear antenna. The antennas were driven by a generator which
produced a step function or a rectangular pulse of voltage or current. In the present
chapter, a limited range of impedance data is used to give the transient backscattered
field of a linear antenna and a two-element array. The plane wave was considered to
have a step function or rectangular pulse behavior as a function of time. In all cases the
electric field vector of the incident wave was parallel to the axis of the linear antennas.
The backscattered field was computed only in the direction of the original excitation.

THEORETICAL FORMULATION

The reciprocity relation can be used to find the current IL through the load resistor
of the antenna shown in Figs. 1 and 2. If the magnitude of the incident electric field is
Es , then Thevinin's theorem (1) yields

V0 0 - 2he(O,/30 h)E e
Z + Z ZO ° ZL 0

where he(9,3 0 0h) = effective half-length of the antenna and r = t - (ric) . If F(,,3oh) is
the field characteristic on transmission, then the reradiated electric field Er can be
found from a knowledge of the current IL induced by the original field:

Err = 2 I F(9,8oh)e 2 (2)

where r2 = t - ( c) . Since only the current at the center of the antenna is involved in
the determination of the backscattered field, certain approximations are inherent in the
method. The approximation is that the complete backscattered field is not determined;
only the symmetrical part of the field is involved in finding currents or voltages across

I d f zL2 El Fig. 2 - Array

Fig. -11 < X _ of two linear

Fig. 1 - Linear antenna ZL antennas
2h 

2a

18
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loads connected to the antenna terminals. Thus the backscattered field E " is more
correctly the load current or voltage at the terminals of a perfect dipole placed in the
far field of the reradiating antenna. The steady-state effective lengths and impedances,
however, are based on the actual symmetrical currents that exist on the antennas (2,3).

Since the field factor F( 0, ,0h) of the transmitting antenna is related to the effective
length, Eq. (2) becomes

j~0 (-2h,) ico'
E~wr = 2 ° . eZ Es ejTl: h OJ7_2 (3)Er - ~0+ZE e 1 /3ohee (3

where

/3ohe = F(a,/3 0 h) (4)

With a = - T2 Eq. (3) is reduced to

E = E he2 (0') (5)
0 7T~ 0 Z0 + ZL

where a = (c/h) t . Since the Fourier representation of a step function is given by

1&raK, O in wdot 6
V(t) = 2 dc (6)

then the scattered field response to a primary field of step function form is

E = 0E im Fr / 2 e d~- 1 (7)(7T o L [ h( Z.+ZL) c]

or, since 3 h=(co/c) h

Egr(t) = - (E h) Im RJ(/ 0h)e ° d(,3 0h)j (8)

where ,32 2 ( ,/3h)

(/h) 2 (Z0 +ZL)

With x = 3oh and t = ca/h the reradiated field can be placed in the form of a Fourier
transform, or

Err(t) = C0 Im [fJ(X) e dxJ . (9)

The function (x) = R + jJi is shown in Fig. 2 for two different values of load re-
sistance Z = 0 and Z = Z*. This function decreases rapidly for ,80 h = with the major re-
gion of interest in the range 0 < ,,h < 7T. As a first approximation the higher frequency
values of 3(x) are neglected beyond the limited range given in Fig. 2. Because of this it
is expected that the fine details of the time response will not be reproduced, and the

19
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response for small t will be in error. However, this latter error does not play an im-
portant role, since the leading pulse edges are not straight. The time response was
found by first approximating the function J{(x) by a series of displaced sinusoids f(x),
where

I O. $ < xi I

f(x) = b sin ( -X 1 ) , X1 < x < + a,

0 , X > x 1 + a .

(10)

The series of displaced sinusoids is then substituted in the explicit formula for the re-
radiated field given by

(11)Er(t) = C FX$i(x) cos t dx + f {(X) sin t dx .0 j~~L f 

The two integrals involved are C(u; xi, ai) and S(u; xi, at), where

C(u; xi, a) =

S(u; xi, a) =

0,

f f(x; xi, ai)

o

f f(x; xi a)
0o

cos U dx

sin ux d ,

< 1 

sin (Xi) x Z < x < xl +a,
a.

0, x >xi +a .

By elementary methods the integrals in Eqs. (12) and (13) yield after integration

(CU; x, ai = 

and

S(u; xi, a) = 7T {
aji

F I cos [(xi + a)u + cos UxI

sin [ iais ux

sin [(xi +aj)u] + sin u 
( 7)2 - U2

xai/

In the above equation u is the normalized time variable (c/h) r. For example the reradi-
ated field of a single antenna with ZL = 0' is given approximately by

and

where

(12)

(13)

f(x; xi, a) = (14)

(15)

(16)

20
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E;,(t) Co [.26 C 20, / - C(77T9 ' 4026 (_ 720 , 0 - 0. 26 C (tt, 20',1 T )

477 2n\+ 0.4 (U 0 ,1 0. 17 S (U, lo 6 -).
1 0 10/]0

(17)

The approximate step and pulse response for ZL = 0 and ZL = z is given in Fig. 3. It may
be concluded from these results that the time behavior is insensitive to the pulse length.
The result of changing the load resistance from ZL = 0 to ZL = 4 is hardly detectable.

0.6

0.4 - L=° o (oh) , {h)2 (Zo +ZL)

-0.2 _ L \ 41

-0.4 h

-0.6 I l
0 77 2 7r

Poh

Fig. 3 - Effect of load impedance on J{(,80h)

TRANSIENT BACKSCATTER FROM A TWO-ELEMENT ARRAY

The effective voltage at the receiving terminals of an element in an array concerns
not only the effective length of the element but also the array factor. Thus the equivalent
voltage at the receiving terminals of an array is

(18)V -2h (/3oke)2 A(0,0)
OC Zin + ZL

where zi, is the driving point impedance of an element in the array and A( 0,0) is the
array factor. The array factor A( 0, ) for an N-element array is

(19)A(04) = sin NxNsin 

where

N = total number of elements

= 7T( cos sin 0 -

21
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Fig. 4 - Backscatter from a linear antenna
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Fig. 5 - Backscatter from a two-element array
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b = element spacing

= phase delay between elements.

For a two-element array in the H plane ( = /2),

2 sin (/3b cos () '\
A(t, 0) = . /b \V cos 2 S (20)

The function x(x) corresponding to Eq. (18) is shown in Fig. 4 calculated from the King-
Sandler quasi-zeroth-order impedances. Since driving-point impedances for arrays
were calculated only for /3 b < 7 and 8Bh < , only the restricted range which included
the first antiresonance was used.

Note that as the frequency changes, both the element length and the separation must
be increased in the same ratio.

The same method of performing the Fourier integration was used for arrays as for
the single antenna. The step and pulse field response is shown in Fig. 5 for the two
cases ZL = Z* and ZL = .
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